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The over-passing probability across an inverted parabolic potential barrier is investigated according to the
classical and quantal generalized Langevin equations. It is shown that, in the classical case, the asymptotic
value of the over-passing probability is determined by a single dominant root of the “characteristic function,”
and it is given by a simple expression. The expression for the over-passing probability is quite general, and
details of dissipation mechanism and memory effects enter into the expression only through the dominant root
of the characteristic equation.
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I. INTRODUCTION

In many physical systems, for example, transport pro-
cesses in condensed matter physics, activation processes in
chemical reactions, and thermal fission and fusion reactions
in nuclear physics, generalized Langevin approach provides
a very useful framework for a theoretical description of the
reaction under consideration �1–7�. According to the general
framework of Mori �8�, the equations of motion of relevant
variables, in general, appear as non-Markovian stochastic
differential equations, referred to as generalized Langevin
equations �GLE�. These equations involve memory-
dependent dissipation and correlated random forces, which
are connected to each other in accordance with the
fluctuation-dissipation relation of non-equilibrium statistical
mechanics. It is possible to derive the GLE in the classical
limit, and also including quantum statistical effects �9–14�.
The generalized Langevin approach has recently gained a lot
of interest as a mathematical tool to deal with diffusion in
disordered medium, phenomenon known as anomalous dif-
fusion which is characterized by long-range power-law cor-
relations encountered in various physical processes such as
the dynamics of polymers �15�, decorrelation processes in
microemulsions �16�, charge transport in amorphous semi-
conductors �17�, and diffusion in fractals �18�.

After the pioneering work of Kramers, the Langevin ap-
proach has been applied to describe normal as well as
anomalous diffusion over a potential barrier in many re-
search subjects. In order to solve the GLE, one must assume
a particular form for the spectral density of the environment
or the memory kernel which define the non-Markovian ef-
fects. In our study, we investigate the consequences of the
non-Markovian effects on the asymptotic behavior of the
system. We consider the evolution of a single-relevant vari-
able with sharp initial values according to the classical and
quantal GLE. The noise term in the GLE is a Gaussian sto-
chastic variable and hence the probability distribution has a
Gaussian form, which is specified by the mean values and
the variances of the relevant variables. In the specific case of

exponential friction-memory function �FMF�, the non-
Markovian problem was solved analytically in �19�. Here,
we consider a general form of the FMF, and investigate
memory effects on the dynamical evolution of normal as
well as anomalous systems. We show that for classical GLE
the asymptotic value of the over-passing probability is deter-
mined by a single dominant root of the “characteristic func-
tion” equation �8� and given by a simple expression �15�.
This expression for the over-passing probability is quite gen-
eral, and details of dissipation mechanism and memory ef-
fects enter into the expression only through the dominant
root of the characteristic equation �19�. In the case of quantal
GLE, the asymptotic expression of the over-passing prob-
ability has the same structure as the classical case, except it
involves a quantity which is determined by a numerical in-
tegration over the spectral density.

The formal expression for the over-passing probability is
derived in Sec. II. The analysis of the probability and some
general results are explained in Sec. III. The conclusion is
given in Sec. IV.

II. FORMAL EXPRESSION FOR THE OVER-PASSING
PROBABILITY

A. Over-passing probability for the classical GLE

The classical GLE reads as

q̈�t� = −
1

m

�V

�q
− �

0

t

��t − t��q̇�t��dt� + ��t� , �1�

where ��t� is the model-dependent FMF and the stochastic
driving term ��t� has a Gaussian distribution with first and
second moments given by

���t�� = 0, �2�

���t���t��� =
T

m
���t − t��� , �3�
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so that the classical fluctuation-dissipation theorem is satis-
fied. Here, T is the temperature of the heat bath. All through-
out the paper, we set kB=1 where kB is the Boltzmann con-
stant.

For a quadratic potential barrier with a barrier height B
which is defined by the initial position q0 as

V�q� =
1

2
m�2�q0

2 − q2� = B −
1

2
m�2q2, �4�

using the Laplace transform of Eq. �1�, the mean and the
variance of q�t� over the noise, denoted by �¯�, can be ob-
tained as

�q�t�� = q0	1 + �2�
0

t

h�t��dt�
 +
p0

m
h�t� �5�

and

�qq�t� =
T

m
�

0

t

dt��
0

t

dt�h�t��h�t�����t� − t��� , �6�

respectively. The time-dependent function h�t� reads as

h�t� = L−1�1/D�s�� = �
i

Res�h̃�si��esit, �7�

where L−1 stands for inverse Laplace transform and

Res�h̃�si�� is the residue of h̃�s�=L�h�t�� at the roots �poles�
si of the characteristic function

D�s� = s2 + s�̃�s� − �2, �8�

with �̃�s�=L���t��=�0
�exp�−st���t�dt being the Laplace

transform of ��t�. The initial position q0 as well as the initial
momentum p0 of the collective system are considered to be
sharp. The formal expressions for �p�t��, �pp�t�, and �qp�t�
can also be obtained, but are irrelevant for finding the over-
passing probability. For a quadratic potential, the relevant
variables have Gaussian distribution. By integrating out the
momentum, the reduced distribution

W�q� =
1

2��qq�t�
exp	−

�q − �q�t���2

2�qq�t� 
 �9�

is obtained. Starting with the initial value q0�0, the over-
passing probability is simply the probability that the system
is found on the other side of the potential barrier, hence the
probability reads �20,21� as

P�t� = �
0

�

W�q�dq =
1

2
erfc	−

�q�t��
2�qq�t�


 . �10�

This converges to a finite value,

P = P�t → �� =
1

2
erfc	−

�q�t → ���
2�qq�t → ��


 , �11�

which defines the asymptotic value of the over-passing prob-
ability.

In various studies on activated rate processes the charac-
teristic function equation �8� appears �4,22–28� and it is
shown that Eq. �8� has only one positive root �or pole�, called

hereafter s1, which is larger than the real parts of all the
others, see the appendix of �25� for details. This suggests that
the asymptotic behavior of Eq. �7� is

h�t → �� = Res�h̃�s1��es1t. �12�

Therefore, using Eq. �12�, Eqs. �5� and �6� read as

�q�t → ��� = Res�h̃�s1��	q0�2

s1
+

p0

m

es1t �13�

and

�qq�t → �� = �Res�h̃�s1���2 T

m
	�2 − s1

2

s1
2 
e2s1t, �14�

where the last equation is obtained by performing the inte-
gration of Eq. �6� using the variables u= t�+ t� and v= t�− t�
and then using the equation D�s1�=0. Substituting Eqs. �13�
and �14� into Eq. �11� we get the over-passing probability in
the form

P =
1

2
erfc� 1

1 − y2	B

T
− yK

T

� , �15�

where B is the barrier height measured from the initial posi-
tion defined in Eq. �4� whereas K= p0

2 /2m is the initial ki-
netic energy. The function y is given by

y =
s1

�
. �16�

If p0	0, there exists a critical initial kinetic energy Kc
=B /y2 for which the mean trajectory equation �13� con-
verges to the top of the barrier, �q�t→���=0, and hence the
kernel of the error function in Eq. �15� vanishes to give the
probability P=1 /2. Since the critical kinetic energy must be
larger than the barrier height B, the function y can assume
any value in the interval,

0 
 y 
 1. �17�

The function y is the Kramers factor in the rate formula for a
non-Markovian escape process from a metastable state
�4,22–27,29� and here it is the function that determines the
non-Markovian effects on the over-passing probability. Fig-
ure 1 shows the probability, Eq. �15�, being plotted versus y
for three energy regions. For y=1, the probability takes its
classical value, which corresponds to the trivial system with-
out dissipation. The probability for the over-damped system
is obtained for y=0, which is the smallest probability for
kinetic energies K larger or equal to the barrier height B.
Then, the function y can be termed as “the dissipation reduc-
ing factor.” However, when the kinetic energy is smaller than
the barrier height we have a more interesting situation where
the maximum

Pmax =
1

2
erfc	B − K

T

, K 
 B , �18�

occurs at some middle-point value
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ymax =K

B
, K 
 B . �19�

Since the function y is the only positive root s1 of Eq. �8�
divided by the curvature parameter � of the potential barrier,
it depends on the specific form of the FMF and is a function
of the parameters that FMF is expressed by as well as the
curvature parameter � of the potential. There will be a spe-
cific set of these parameters for which ymax in Eq. �19� will
be obtained. The probability Pmax occurs due to the compen-
sation between dissipation which reduces probability and
fluctuation which enhances probability. This is explained in
the next section.

It should be emphasized here that the results, Eqs. �15�
and �18�, are valid for any FMF ��t� whose Laplace trans-
form exists. The formal simplicity of these expressions is due
to the fact that the asymptotic behavior �t→�� of non-
Markovian systems with Gaussian noises diffusing over a
parabolic barrier can be reduced to that of Markovian ones
with an effective friction coefficient,

�eff = �̃�s1� , �20�

which contains all non-Markovian effects. This is easily seen
when the normalized root, using Eq. �8�, is cast into the
formal form,

y =1 + 	�eff

2�

2

−
�eff

2�
, �21�

which has the same form with the Markovian factor equation
�28�.

B. Over-passing probability for the quantum GLE

For systems with quadratic potentials, the difference be-
tween the classical and c-number quantum GLE is the cor-
relation of the stochastic force �1,2,30�, hence the quantum
GLE has the same form with Eq. �1� but with a mean-zero
Gaussian noise satisfying the correlation

���t���t��� =
1

m
�

−�

� d�

�
T�����̂real���e−i��t−t��, �22�

instead of Eq. �3�. T� is the effective temperature given by

T���� =
�

2
coth	�

2T

 , �23�

and �̂real��� is the real part of the Fourier transformed FMF
�̂���=�−�

� ��t�exp�i�t�dt. The effective temperature is the
mean energy of a quantum harmonic oscillator and for high
temperatures ��2T, it takes its classical value T�→T.
The full quantum limit T�→� /2 is obtained at low tem-
peratures ��2T and represents the zero-point �vacuum�
energy.

Since the noise term does not appear in the expression of
the mean position, Eqs. �5� and �13� are valid for quantum
systems as well, whereas the variance of the position takes
the form

�qq�t� =
1

m
�

0

t

dt��
0

t

dt�h�t��h�t���
−�

� d�

�

�T�����̂real���e−i��t�−t��. �24�

By using Eq. �12�, the asymptotic value of the variance reads
as

�qq�t → �� =
1

m
�Res�h̃�s1���2e2s1t�

−�

� d�

�
T����

�̂real���
�2 + s1

2 .

�25�

Substituting Eq. �13� and Eq. �25� into Eq. �11�, we get the
over-passing probability as

P =
1

2
erfc	 1

G�y�
�B − yK�
 , �26�

where

G�y� = y2�
−�

� d�

�
T����

�̂real���
�2 + s1

2 . �27�

III. ANALYSIS OF THE PROBABILITY

A. Influence of the memory

The knowledge of the FMF ��t� is crucial for determining
the over-passing probability since the probabilities, Eqs. �15�
and �26�, are functions of the positive root of the character-
istic function equation �8� which depends on the Laplace
transform �̃�s�. As an example, in the Markovian �M� limit,
the normalized root y is explicitly given by

y�M� =1 + 	 �

2�

2

−
�

2�
�28�

for the FMF �20�,
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FIG. 1. The asymptotic probability equation �15� is plotted ver-
sus the parameter y for the three energy regions. The temperature is
taken such that T /B=0.5 and the solid, dashed, and dotted lines
stand for K /B=1.5, 1 , 0.5 values, respectively.
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��M��t� = 2���t� , �29�

which corresponds to a memoryless dissipation with a re-
duced friction coefficient �. For non-Markovian exponential
�E� FMF �19�,

��E��t� =
�

�
exp	−

t

�

 , �30�

the normalized root can be expressed as

y�E� = −
1

3��
−

1

3��

− 1 + 3�� − 3����2

�− 1 +
9

2
�� + 9����2 +	− 1 +

9

2
�� + 9����2
2

+ �− 1 + 3�� − 3����2�3�1/3

+
1

3��
�− 1 +

9

2
�� + 9����2 +	− 1 +

9

2
�� + 9����2
2

+ �− 1 + 3�� − 3����2�3�1/3

. �31�

The exponential FMF corresponds to a dissipating system
with a reduced friction coefficient � and a memory charac-
terized by the relaxation time �. In the limit �→0+ the ex-
ponential FMF equation �30� reduces to the Markovian FMF
equation �29�.

The over-passing probability for classical systems with
Markovian FMF equation �29� and the exponential FMF
equation �30� is obtained by substituting Eq. �28� and Eq.
�31� into Eq. �15�, respectively. Figure 2 shows the probabil-
ity for the Markovian system plotted versus the initial kinetic
energy over potential barrier height for various friction coef-
ficients. The intersection points with the maximum probabil-
ity �solid line� corresponds to the specific initial kinetic en-
ergy and specific friction � /� in Eq. �28� for which the
condition, Eq. �19�, is met. In Fig. 3, it is seen that as friction
� /� increases, the factors y�M� and y�E� are decreasing. In-
creasing memory time �� results in increasing y for any
� /�. Therefore, by looking at the behavior of the probability
with respect to the factor y �see Fig. 1�, the friction � /� and
memory time �� dependence of the probability is expected
as in Fig. 4. For kinetic energies K larger or equal to the
barrier height B, the probability is decreasing as � /� is in-
creasing which is due to the dissipation of kinetic energy. For
zero kinetic energy the situation is opposite, as � /� is get-

ting larger the probability is increasing which is due to the
thermal fluctuations of the observables. In the intermediate
region where the kinetic energy is less than the barrier height
B, the probability obtains a peaked value, Eq. �18�. This can
be understood as the dissipation dominating at the right-hand
side of the maximum and fluctuation dominating at the left-
hand side of the maximum. In this region, the probability
approaches the asymptotic value 0.5 erfc�B /T� for the over-
damped case � /�→� regardless of the initial kinetic energy
K and memory time ��.

In general, by using Eq. �8� a relation between the root y
for any non-Markovian FMF ��t� and the Markovian root
y�M� given by Eq. �28� can be obtained as

y

y�M� =
y�M� + ��0�/�

y + �eff/�
. �32�

Here, the zero-frequency component of the Laplace trans-
formed FMF defines the static friction,

��0� = �̃�0� = �
0

�

��t�dt �33�

which is equal to the friction coefficient � in case of normal
�nonanomalous� diffusion and �eff is the non-Markovian ef-
fective friction defined in Eq. �20�. From Eq. �32� and Eq.
�33�, when y is larger �smaller� than y�M�, the non-Markovian
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FIG. 2. The probability for classical Markovian case is plotted
versus the initial kinetic energy over potential barrier height for
various friction coefficients. The maximum probability, Eq. �18�, is
indicated by a solid line. The temperature is such that T /B=0.25.
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FIG. 3. The functions, Eq. �28� �solid line� and Eq. �31�, are
plotted versus the friction � /� for different relaxation times ��.
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effective friction �eff is smaller �larger� than the Markovian
friction � �22�. Hence by comparing the non-Markovian
roots with Markovian roots, it is possible to relate the effec-
tive frictions and hence the probabilities.

B. Influence of the oscillations

It is possible to obtain an exact FMF for a system coupled
to a heat-bath of harmonic oscillators known as the Caldeira-

Leggett model �7,31–33�. By using this model, the global
degrees of freedom are reduced to the relevant ones and a
GLE in the form of Eq. �1� is obtained. The corresponding
FMF is a sum of cosine functions and hence has an oscilla-
tory behavior. In order to understand the consequences of the
oscillatory memories, let us consider the following FMF:

��EC��t� =
�1 + �2��

�
exp	−

t

�

cos	�

t

�

 , �34�

where the parameter � keeps track of the oscillations �see
Fig. 5�. The plots of the corresponding normalized positive
root y�EC� where EC stands for exponential-cosine FMF
equation �34� and the corresponding over-passing probability
for classical systems are shown in Fig. 6 and Fig. 7, respec-
tively. It is seen that for small values of � the factor y�EC�

is larger than y�M� �solid line� and for large values of �
the factor y�EC� is smaller than y�M�. By using the equation
�̃�EC��s1�= �̃�EC��0� and the Laplace transform of Eq. �34�,
the critical value �c for which y�EC�=y�M� is satisfied can be
found as

�c = 1 + ��y�M�, �35�

which is in the interval 1��c�1+��. When the dimen-
sionless oscillation frequency is less than the critical value
���c, one has y�EC�	y�M� and hence non-Markovian dissi-
pation is smaller than the Markovian dissipation, �eff��.
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FIG. 4. The probability equation �15� for the exponential FMF
equation �30� with the corresponding normalized positive root equa-
tion �31� is plotted versus the friction � /� for various memory
times ��. No memory case ��=0 �solid lines� corresponds to the
Markovian FMF equation �29� with y given by Eq. �28�. The tem-
perature is taken so that T /B=0.25 and each figure is plotted with
different initial kinetic energy K /B=1.5, 1 , 0.5, 0, as labeled.

0.5 1 1.5 2 2.5 3 3.5 4
t�Τ

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Χ �t�
��������������
Χ �0�

Λ � 3
Λ � 2
Λ � 1
Λ � 0

FIG. 5. The normalized FMF equation �34� is plotted versus
time. Different lines correspond to different oscillation frequencies
�, the solid line with �=0 is the exponential FMF.
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FIG. 6. The normalized positive root y�EC� of Eq. �8� where the
Laplace transform of Eq. �34� is used, is plotted versus friction � /�
for various oscillation frequencies �. The memory time is chosen as
��=2. The solid line corresponds to the Markovian factor equation
�28�.
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This means that the oscillations of the FMF are irrelevant
during the memory time �� and the dissipation is reduced
like in the exponential FMF case. When the oscillations are
relevant �	�c, one has y�EC��y�M� and consequently the
oscillations of the FMF cancel out in the characteristic time
interval �� increasing the non-Markovian effective friction
�̃�EC��s1� with respect to the Markovian friction �̃�EC��0�.

For the asymptotic value �→�, substituting the Laplace
transform of Eq. �34� into Eq. �8� and taking the limit, the
normalized positive root can be found as

y�→�
�EC� =

1

1 + ��
��1 + ��� + 	 �

2�

2

−
�

2�
� , �36�

which satisfies the following inequality y�→�
�EC� �y�	�c

�EC� �y�M�

�y���c

�EC� . The corresponding probabilities follow the same or-

der, P�→�
�EC� � P�	�c

�EC� � P�M�� P���c

�EC� for K�B.

C. Influence of the anomalous diffusion

The FMF for a system coupled to a non-Ohmic �NO� heat
bath can be expressed as

��NO��t� = 2�
0

� d�

�

J���
�

cos��t� , �37�

where J��� is the spectral density of the heat bath. Non-
Ohmic spectral density has the form �2,5,34–39�

J��� = �
��

�r
�−1 �0 � � � 2� , �38�

where �r is some reference frequency allowing for consistent
dimensionality of the friction � for any �. For matter of
convenience, we set this frequency as that of the potential
barrier, �r=�. The explicit form of the FMF is

��NO��t� =
2�

���−1cos	��

2

����t−� �t � 0� , �39�

with the Laplace transform,

�̃�NO��s� =
�

sin	��

2

	

s

�

�−1

. �40�

Figures 8 and 9 show the plot of the FMF equation �39� as a
function of time and �, respectively. Note that �=1 recovers
the normal Markovian FMF. For super-Ohmic case �	1, the
FMF equation �39� is negative and approaches −� as t→0,
but from Eq. �37� it is seen that ��NO��0�→ +�. Furthermore,
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FIG. 7. The probability equation �15� for the exponential-cosine
FMF equation �34�, with the corresponding factor y�EC� shown in
Fig. 6, is plotted versus the friction � /� for various oscillation
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ian probability is indicated by a solid line. The temperature is taken
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these divergences in the super-Ohmic case are such that the
static friction is vanishing, ��0�= �̃�NO��0�=�0

���NO��t�dt=0.
On the other hand, for sub-Ohmic diffusion ��1, there is a
divergence to +� as t→0, hence the static friction is diver-
gent, ��0�= +�. This behavior is completely different from
the Ohmic dissipative systems which have static frictions
that are simply equal to the friction coefficient �.

A force-free system coupled to a bath with non-Ohmic
spectral density of the form, Eq. �38�, exhibits anomalous
diffusion �40� which is characterized by the mean square
displacement given by

�x2�t�� � t� �t → �� , �41�

where, for 0���1 the system is called subdiffusive and for
1���2 the system is superdiffusive. The static friction can
be used to distinguish between the sub-Ohmic ���0�→��,
Ohmic ���0�→ finite�, and super-Ohmic ���0�→0� environ-
ments which mean subdiffusion, normal diffusion, superdif-
fusion for force-free systems.

Our expressions for the over-passing probability are valid
for non-Ohmic dissipation as well, since the characteristic
function equation �8� again has only one positive root. Figure
10 shows the plot of the normalized root y of Eq. �8� versus
the parameters �. The corresponding probabilities are indi-

cated in Fig. 11. The effective friction �eff is enhanced for
the very subdiffusive or very superdiffusive systems.

We emphasize that our study is limited only to Gaussian
distributions and hence does not include systems exhibiting
non-Gaussian anomalous diffusion, such as Lévy flights.
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D. Quantum effects

The preceding three sections deal with the effects of the
FMF and hence of the normalized root y on the probability.
Here, we investigate the effects of quantum noise on the
dynamics. For this purpose we consider the exponential FMF
equation �30� with the corresponding root equation �31�. The
over-passing probability is obtained by substituting this root
and the Fourier transform of the FMF into Eq. �26�. In order
to compare our results with some previous studies we con-
sider the fusion reaction of 48Ca and 238U nuclei with the
same parameter set �9–11�. The friction coefficient is taken
as � /�=3.29, the memory time is ��=1 /15, the curvature
parameter of the conditional saddle is �=1, and the barrier
height with respect to the initial position is B=4, in arbitrary
units. The comparison of the probabilities for the classical
and quantum systems is shown in Fig. 12 which is in good
agreement with the previous studies �9–11�. At low tempera-
tures, the over-passing probability is enhanced since the vari-
ance of the position is larger when the quantum effects are
included. At high temperatures, the classical over-passing
probability is recovered.

IV. CONCLUSION

The probability of a system to diffuse over a barrier is an
important quantity in many research subjects such as activa-
tion processes in chemical physics, fusion and fission reac-
tions, as well as giant resonances in nuclear physics. In this
work, we consider the evolution of a single-relevant variable
according to the classical and quantal GLE. When the poten-
tial barrier has the shape of an inverted parabola, the
asymptotic value of the over-passing probability is given by
the complimentary error function according to Eq. �11�. We
show that in the case of classical GLE the asymptotic value

of the over-passing probability is determined by a single
dominant root y=s1 /� of the “characteristic function”
D�s1�=0, and given by a simple expression, Eq. �15�. The
details of dissipation mechanism and memory effects enter
into the expression only through the dominant root of the
characteristic equation. One of the results we found is that
for the initial kinetic energies K less than the barrier height
B, which is the case for many physical situations, the over-
passing probability of the diffusion due to the thermal fluc-
tuations becomes maximum when the dominant root fits the
condition given by Eq. �19�. This is a result of the competi-
tion between dissipation and fluctuation. In the case of quan-
tal GLE, the asymptotic value of the over-passing probability
has the same structure as the classical one, except it involves
a quantity which is determined by a numerical integration
over the spectral density. The probability is enhanced at low
temperatures where the quantum effects are relevant. The
expression for the over-passing probability, Eq. �15� in the
classical limit and Eq. �26� in quantal framework, are valid
for a general FMF provided that the FMF has a well-defined
Laplace transform.

It is shown that the oscillatory behavior of the FMF can
have an important impact on the factor y and hence on the
over-passing probability. For oscillation frequencies � less
than the critical value equation �35�, the non-Markovian dis-
sipation �eff is reduced with respect to the Markovian one �.
Whereas for frequencies exceeding the critical value, the
non-Markovian dissipation is enhanced.

Our formulation also covers systems exhibiting anoma-
lous diffusion with Gaussian noises. In this case, the static
friction coefficient ��0� is zero or infinity for superdiffusive
or subdiffusive systems, respectively. The feature allows to
distinguish easily between these anomalies. The effective
friction �eff is enhanced for subdiffusive systems ��1 with
respect to the Markovian friction coefficient �. Whereas
there is a minimum of the effective friction or similarly
maximum of the non-Ohmic root ymax

�NO� which changes with
� /� in the superdiffusive region �	1.
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